All functions

addMissingSpecColumns()

Add missing columns for specification

all_match()

check if all values of two vectors match

avg_spacing()

Computes means for various slices of a regression_spec by betas product.

bin_along_range()

Bin a variable along a range

bootstrapRows()

Function that fully bootstraps rows

capture_output()

Capture print output

check_algorithm()

Check if algorithm exists

coef(<qs>)

Method for getting coefficients from fitted qs model

collapse_correctly()

helper function, collapse using correct method

columns_match_vector()

Check which rows of a matrix match a whole vector

csrToDgc()

Convert SparseM row compressed matrix to Matrix dgC matrix

cub_root()

Find cube root of the form ax^3 + bx^2 + cx + d=0

cub_root_deriv()

Derivative of a cubic root

cub_root_select()

Find cube root of the form ax^3 + bx^2 + cx + d=0

cub_root_select_rconics()

Calculate cubic roots using the Rconics package

defcombine()

helper function, borrowed from foreach

denseMatrixToSparse()

Convert matrix to a SparseM csr matrix

distributional_effects()

Calculate distributional effects

do_matched_call()

run function only with arguments that match the arguments for f

.onAttach()

Set bootstrap cores on load + welcome messages

ensureSpecFullRank()

Ensure that a regression specification is full rank

eval_CDF()

Evaluate CDF given quantiles and residuals

eval_PDF()

Evaluate PDF given quantiles and residuals

eval_Quantiles()

Evaluate CDF given quantiles and residuals

eval_density_R()

A function to evaluate the quantile or density of given data based on normal distribution

fitQuantileRegression()

Estimate a single quantile regression

fit_approx_quantile_model()

Compute quantile regression via accelerated gradient descent using Huber approximation, warm start based on data subset

fit_lasso()

Fit a quantile regression w/ a lasso penalty

fit_penalize_approx_quantile_model()

Compute quantile regression via accelerated gradient descent using Huber approximation, warm start based on data subset

getColNums()

Get column numbers given starting values and regression specification

getCores() setCores()

Get user defined cores

getRank()

Computes the rank of a matrix. Outputs consistent results across various matrix types.

getRows()

Function which gets resampled rows

getWeights()

Function that returns the correct weights for weighted bootstrap

get_intercept()

Finds which column of X has the intercept term

get_marginal_effects()

Calculates the marginal effects of an N x p matrix (wide-format) of qreg coefficients

get_strata()

Get clusters for subsampling given a formula

get_underlying()

Get the data inside the s4 slot of this sparse matrix class

glob_obs_mat()

Glob observations w/ residuals above a certain magnitude

glob_obs_vec()

Glob observations w/ residuals above a certain magnitude

inv()

Inverse of a matrix, but catches the error

lasso_cv_search()

Search for optimal lambda via cross-validation

leaveRows()

Function that doesn't reorder rows (for weighted bootstrap)

makePlan()

Make a plan for the future parallel backend

make_se_mat()

Make matrix into a "standard error" matrix

map_parallel()

Map a function along a list in parallel

map_rows_parallel()

Map a function along rows of a matrix or data.frame

marginal_effects()

Get all marginal effects of variables in the fit

matrixTocsc()

Convert Matrix Sparse Matrix to SparseM row compressed matrix

matrixTocsr()

Convert Matrix Sparse Matrix to SparseM row compressed matrix

me()

Get marginal effects at a set of levels for the covariates

make_penalized_blots() mice.impute.qs()

Imputation function to be used with the mice package

na_if_null()

return NA if argument is null

pad_strings()

Pad vector of strings based on longest length

plot(<distributional_effects>)

Visualize distributional effects

post_processed_grad_descent()

Smoothed Quantile Regression with Post-Processing

predict(<qs>)

Predict quantiles given fitted spacings model

print(<qs>)

Print qs summary

print(<qs_me>)

Print method for quantspace marginal effects

print(<qs_summary>)

Print qs summary

printWarnings()

Generate warning messages for regression model

q_spline_R()

Computes the tail parameters and the second derivatives given quantiles

qr_drop_colinear_columns()

Drop Colinear Columns from dense matrix

qs()

Compute quantile regressions via quantile spacings

qs_control()

Control quantreg_spacing parameters

quad_form()

Quadratic form of the cubic polynomial

quantreg_spacing()

Lower level function which calculates the quantile spacing regression coefficients

randomly_assign()

Randomly assign fold ids

regressResiduals()

Runs quantile regression on residuals of the model (calculates spaces around jstar quantile)

reorder_coefficients()

Reorder coefficients in case intercept wasn't the first term

repMat()

For copying matrices as in Matlab (works for sparse matrices)

rescale_coefficients()

Rescale coefficients estimated on scaled data to match unscaled data

residuals(<qs>)

Method for getting residuals from fitted qs model

rho()

Function for calculating Pseudo-R^2 values Evaluates the check objective function (possibly weighted) for QREG

round_if()

Round if x is numeric, otherwise don't

rq.fit.agd()

Quantile Regression approximated w/ huber loss

rq.fit.br()

Version that complies with more general requirements

rq.fit.lasso()

Quantile Regression w/ Lasso Penalty

rq.fit.post_lasso()

Quantile Regression w/ Lasso Penalty

rq.fit.sfn()

Version that complies with more general requirements

rq.fit.sfn_start_val()

Sparse Regression Quantile Fitting with Weights

rq.fit.two_pass()

Quantile regression approximated w/ huber loss followed by post-processing

scale_for_lasso()

Scale matrix for lasso regression

se_control()

Control standard_errors parameters

seq_quant()

For sequencing along probabilities

spDiag()

Create sparse diagonal matrix with vector x on diagonal

spSums()

Return column sums of matrix

spacings_to_quantiles()

Compute quantiles given parameter coefficients and data

sparse_qr_drop_colinear_columns()

Drop Colinear Columns from sparse matrix

splint_R()

A function to conduct the interpolation given data and fitted quantiles

resample_qs() weighted_bootstrap() bootstrap() subsample() standard_errors()

Computes standard errors for the quantile regression spacing method using subsampling.

subsampleRows()

Function that fully bootstraps rows

summary(<qs>)

creates a table of summary output for a qs object