Quantile regression approximated w/ huber loss followed by post-processing

rq.fit.two_pass(
  X,
  y,
  tau = 0.5,
  weights = NULL,
  control,
  lambda,
  intercept = NULL,
  init_beta = NULL,
  n_samples = min(c(ceiling(nrow(X)/10), 10000)),
  ...
)

Arguments

X

design matrix

y

outcome vector

tau

target quantile

weights

optional weight vector

control

ignored for now

lambda

ignored for now

intercept

optional integer indicating intercept column that identifies initial values

init_beta

initial guess at betas

n_samples

number of observations to use in "warmup" regression

...

other arguments, ignored for now